
Math 210B Lecture 8 Notes

Daniel Raban

January 25, 2019

1 Normal Extensions, Galois Extensions, and Galois Groups

1.1 The primitive element theorem

Let’s complete the proof from last time.

Theorem 1.1 (primitive element theorem). Every finite, separable extension is simple.

Proof. If F = Fq, then Fqn , where Fq(ξ), where ξ is the primitive (qn−1)-th root of 1. Now
we may assume that F is an infinite field. It suffices to show that any F (α, β)/F (with α, β
algebraic) is simple. Look at γ := α+ cβ for c ∈ F \ {0}. Since F is infinite, we can choose
c 6= (α′ − α)/(β′ − β), where α′ is a conjugate of α and same for β. Then γ 6= α′ + cβ′ for
all such α′, β′. Let f be the minimal polynomial of α, and let h(x) = f(γ − cx) ∈ F (γ)[x].
Now h(β) = f(α) = 0, and h ∈ F (γ)[x]. But h(β′) = f(γ − cβ) 6= 0 for all β′ conjugate
(but not equal) to β. If g ∈ F [x] is the minimal polynomial of β, then since it and h share
just one root, β, in F (γ), the minimal polynomial of β is x − β. Then β ∈ F (γ), which
gives α ∈ F (γ). So F (γ) = F (α, β).

Remark 1.1. Where does separability come into play during the proof? We used that g
is separable to show that g(x) 6= (x− β)k for k > 1.

1.2 Normal extensions

Definition 1.1. An algebraic extension E/F is normal if it is the splitting field of some
set of polynomials in F [x].

Example 1.1. Q( 4
√

2)/Q is not normal. The minimal polynomial of 4
√

2, x4− 2, has roots
not in Q( 4

√
2). However, the extension Q( 4

√
2, i)/Q is normal.

Lemma 1.1. If K/F is normal, then so is K/E for any intermediate E.

Theorem 1.2. An algebraic extension E/F is normal if and only if every embedding
Φ : E → F (where F ⊆ E) fixing F satisfies Φ(E) = E.
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Proof. Let E/F be normal, and say it is the splitting field of S ⊆ F [x]. Suppose Φ : E → F
is an embedding fixing F . Let α ∈ E. Then Φ(α) = β, where β is conjugate to α over F .
So β ∈ E, so Φ(E) ⊆ E. Then Φ(E) = E.

Suppose that Φ(E) = E for all Φ, and let α ∈ E have minimal polynomial f . Given
β ∈ F that is a root of f , there exists Φ such that Φ(α) = β. Therefore, β ∈ E. So in
particular, E is the splitting field of all minimal polynomials in F [x] with a root in E.

Corollary 1.1. IF E/F is normal and f ∈ F [x] has a root in E, then f splits in E.

Proposition 1.1. If E,K ⊆ F are normal over F , then so is the compositum EK.

Proof. E is the splitting field of S. K is the splitting field of T . Then EK is the splitting
field of S ∪ T .

Here is an alternative proof.

Proof. If ϕ ∈ EmbF (EK), then since ϕ(E) = E and ϕ(K) = K, ϕ(EK) = EK.

1.3 Galois groups and extensions

Definition 1.2. The Galois group Gal(E/F ) of a normal extension E/F is the group of
field automorphisms E → E fixing F .

Sometimes, we may write Gal(E/F ) = AutF (E) ⊆ Aut(E).

Remark 1.2. |Gal(E/F )| = [E : F ]s. This equals the degree when E/F is separable.

Definition 1.3. An extensions E/F is Galois if it is normal and separable.

Remark 1.3. If E/F is finite, then E/F is Galois iff it is normal and |Gal(E/F )| = [E : F ].

Example 1.2. Last time, we showed that Fqn/Fq is separable. Fqn is the splitting field of
xq

n − x, which is separable, so Fqn is Galois. The Frobenius element ϕq ∈ Gal(Fqn/Fq)
is defined by ϕq(α) = αq. This is a field homomorphism; it is an additive homomorphism
because we are in characteristic q. What are the other elements of Gal(Fqn/Fq)?

Proposition 1.2. Gal(Fqn/Fq) = 〈ϕq〉 ∼= Z/nZ.

Proof. The automorphism ϕkq (α) = αq
k

fixes Fqn iff n | k. So its order is n. The Galois
group has order n, so this must be a cyclic group.

Example 1.3. Fp(t1/p)/Fq(t) is purely inseparable. If σ ∈ AutFq(t)(Fq(t1/p)), then σ(t) = t.

So σ(t1/p)p = σ(t) = t. Then σ(t1/p) = t1/p. That is, AutFq(t)(Fq(t1/p)) is trivial.
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Example 1.4. Recall that the cyclotomic polynomial Φn is irreducible. Then [Q(ζn) :
Q] = ϕ(n). Let K be a field of characteristic - n. Define the n-th cyclotomic character
χn : Gal(K(ζn)/K) → (Z/nZ)× sending σ 7→ a (mod n), where σ(ζn) = ζan. We can also

say it like this: σ(ζn) = ζ
χn(σ)
n . This is a homomorphism because

ζχn(στ)
n = σ(τ(ζn)) = σ(ζχn(τ)

n ) = σ(ζn)χn(τ) = ζχn(σ)χn(τ)
n .

This is injective because χn is determined on σ by what power σ raises ζn to.

Proposition 1.3. The map χn : Gal(Q(ζn)/Q)→ (Z/nZ)× is an isomorphism.

Proof. The Galois group has order ϕ(n), the same as the order of (Z/nZ)×. We already
showed that χn is injective.

1.4 Fixed fields

Definition 1.4. The fixed field of a field E by a subgroup G of Aut(E) is the field
EG = {α ∈ E : σ · α = α ∀σ ∈ G}.

Proposition 1.4. If if K/F is Galois, then KGal(K/F ) = F .

Proof. (⊇): F is fixed by every σ ∈ Gal(K/F ).
(⊆): If α ∈ KGal(K/F ), then for all σ ∈ Gal(K/F ), σ · α = α. But this means that α is

the only root of its minimal polynomial in K by normality. Separability gives us that the
minimal polynomial is x− α. Therefore, α ∈ F .

Let K/F is finite and Galois, let E be intermediate, and let σ ∈ Gal(K/F ). We can
consider the restriction σ|E : E → σ(E). If E is normal over F , then this gives a map
Gal(K/F )→ Gal(E/F ).

Lemma 1.2. Let K/F be Galois and E be intermediate. The restriction map resE :
Gal(K/F )/Gal(K/E) → EmbF (E) is a bijection. If E/F is Galois, then this is an iso-
morphism of groups.

Proof is left as an exercise.1

1Why, Professor Sharifi? Why?
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