Math 210B Lecture 8 Notes

Daniel Raban

January 25, 2019

1 Normal Extensions, Galois Extensions, and Galois Groups

1.1 The primitive element theorem

Let's complete the proof from last time.

Theorem 1.1 (primitive element theorem). Every finite, separable extension is simple.

Proof. If $F = \mathbb{F}_q$, then \mathbb{F}_{q^n} , where $\mathbb{F}_q(\xi)$, where ξ is the primitive $(q^n - 1)$ -th root of 1. Now we may assume that F is an infinite field. It suffices to show that any $F(\alpha, \beta)/F$ (with α, β algebraic) is simple. Look at $\gamma := \alpha + c\beta$ for $c \in F \setminus \{0\}$. Since F is infinite, we can choose $c \neq (\alpha' - \alpha)/(\beta' - \beta)$, where α' is a conjugate of α and same for β . Then $\gamma \neq \alpha' + c\beta'$ for all such α', β' . Let f be the minimal polynomial of α , and let $h(x) = f(\gamma - cx) \in F(\gamma)[x]$. Now $h(\beta) = f(\alpha) = 0$, and $h \in F(\gamma)[x]$. But $h(\beta') = f(\gamma - c\beta) \neq 0$ for all β' conjugate (but not equal) to β . If $g \in F[x]$ is the minimal polynomial of β , then since it and h share just one root, β , in $F(\gamma)$, the minimal polynomial of β is $x - \beta$. Then $\beta \in F(\gamma)$, which gives $\alpha \in F(\gamma)$. So $F(\gamma) = F(\alpha, \beta)$.

Remark 1.1. Where does separability come into play during the proof? We used that g is separable to show that $g(x) \neq (x - \beta)^k$ for k > 1.

1.2 Normal extensions

Definition 1.1. An algebraic extension E/F is **normal** if it is the splitting field of some set of polynomials in F[x].

Example 1.1. $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ is not normal. The minimal polynomial of $\sqrt[4]{2}$, $x^4 - 2$, has roots not in $\mathbb{Q}(\sqrt[4]{2})$. However, the extension $\mathbb{Q}(\sqrt[4]{2}, i)/\mathbb{Q}$ is normal.

Lemma 1.1. If K/F is normal, then so is K/E for any intermediate E.

Theorem 1.2. An algebraic extension E/F is normal if and only if every embedding $\Phi: E \to \overline{F}$ (where $\overline{F} \subseteq E$) fixing F satisfies $\Phi(E) = E$.

Proof. Let E/F be normal, and say it is the splitting field of $S \subseteq F[x]$. Suppose $\Phi : E \to \overline{F}$ is an embedding fixing F. Let $\alpha \in E$. Then $\Phi(\alpha) = \beta$, where β is conjugate to α over F. So $\beta \in E$, so $\Phi(E) \subseteq E$. Then $\Phi(E) = E$.

Suppose that $\Phi(E) = E$ for all Φ , and let $\alpha \in E$ have minimal polynomial f. Given $\beta \in \overline{F}$ that is a root of f, there exists Φ such that $\Phi(\alpha) = \beta$. Therefore, $\beta \in E$. So in particular, E is the splitting field of all minimal polynomials in F[x] with a root in E. \Box

Corollary 1.1. IF E/F is normal and $f \in F[x]$ has a root in E, then f splits in E.

Proposition 1.1. If $E, K \subseteq \overline{F}$ are normal over F, then so is the compositum EK.

Proof. E is the splitting field of S. K is the splitting field of T. Then EK is the splitting field of $S \cup T$.

Here is an alternative proof.

Proof. If $\varphi \in \text{Emb}_F(EK)$, then since $\varphi(E) = E$ and $\varphi(K) = K$, $\varphi(EK) = EK$.

1.3 Galois groups and extensions

Definition 1.2. The **Galois group** $\operatorname{Gal}(E/F)$ of a normal extension E/F is the group of field automorphisms $E \to E$ fixing F.

Sometimes, we may write $\operatorname{Gal}(E/F) = \operatorname{Aut}_F(E) \subseteq \operatorname{Aut}(E)$.

Remark 1.2. $|\operatorname{Gal}(E/F)| = [E:F]_s$. This equals the degree when E/F is separable.

Definition 1.3. An extensions E/F is **Galois** if it is normal and separable.

Remark 1.3. If E/F is finite, then E/F is Galois iff it is normal and $|\operatorname{Gal}(E/F)| = [E:F]$.

Example 1.2. Last time, we showed that $\mathbb{F}_{q^n}/\mathbb{F}_q$ is separable. \mathbb{F}_{q^n} is the splitting field of $x^{q^n} - x$, which is separable, so \mathbb{F}_{q^n} is Galois. The **Frobenius element** $\varphi_q \in \text{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q)$ is defined by $\varphi_q(\alpha) = \alpha^q$. This is a field homomorphism; it is an additive homomorphism because we are in characteristic q. What are the other elements of $\text{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q)$?

Proposition 1.2. Gal $(\mathbb{F}_{q^n}/\mathbb{F}_q) = \langle \varphi_q \rangle \cong \mathbb{Z}/n\mathbb{Z}.$

Proof. The automorphism $\varphi_q^k(\alpha) = \alpha^{q^k}$ fixes \mathbb{F}_{q^n} iff $n \mid k$. So its order is n. The Galois group has order n, so this must be a cyclic group.

Example 1.3. $\mathbb{F}_p(t^{1/p})/\mathbb{F}_q(t)$ is purely inseparable. If $\sigma \in \operatorname{Aut}_{\mathbb{F}_q(t)}(\mathbb{F}_q(t^{1/p}))$, then $\sigma(t) = t$. So $\sigma(t^{1/p})^p = \sigma(t) = t$. Then $\sigma(t^{1/p}) = t^{1/p}$. That is, $\operatorname{Aut}_{\mathbb{F}_q(t)}(\mathbb{F}_q(t^{1/p}))$ is trivial. **Example 1.4.** Recall that the cyclotomic polynomial Φ_n is irreducible. Then $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \varphi(n)$. Let K be a field of characteristic $\nmid n$. Define the *n*-th **cyclotomic character** $\chi_n : \operatorname{Gal}(K(\zeta_n)/K) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ sending $\sigma \mapsto a \pmod{n}$, where $\sigma(\zeta_n) = \zeta_n^a$. We can also say it like this: $\sigma(\zeta_n) = \zeta_n^{\chi_n(\sigma)}$. This is a homomorphism because

$$\zeta_n^{\chi_n(\sigma\tau)} = \sigma(\tau(\zeta_n)) = \sigma(\zeta_n^{\chi_n(\tau)}) = \sigma(\zeta_n)^{\chi_n(\tau)} = \zeta_n^{\chi_n(\sigma)\chi_n(\tau)}.$$

This is injective because χ_n is determined on σ by what power σ raises ζ_n to.

Proposition 1.3. The map $\chi_n : \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ is an isomorphism.

Proof. The Galois group has order $\varphi(n)$, the same as the order of $(\mathbb{Z}/n\mathbb{Z})^{\times}$. We already showed that χ_n is injective.

1.4 Fixed fields

Definition 1.4. The fixed field of a field *E* by a subgroup *G* of Aut(*E*) is the field $E^G = \{ \alpha \in E : \sigma \cdot \alpha = \alpha \, \forall \sigma \in G \}.$

Proposition 1.4. If if K/F is Galois, then $K^{\text{Gal}(K/F)} = F$.

Proof. (\supseteq): F is fixed by every $\sigma \in \operatorname{Gal}(K/F)$.

 (\subseteq) : If $\alpha \in K^{\operatorname{Gal}(K/F)}$, then for all $\sigma \in \operatorname{Gal}(K/F)$, $\sigma \cdot \alpha = \alpha$. But this means that α is the only root of its minimal polynomial in K by normality. Separability gives us that the minimal polynomial is $x - \alpha$. Therefore, $\alpha \in F$.

Let K/F is finite and Galois, let E be intermediate, and let $\sigma \in \text{Gal}(K/F)$. We can consider the restriction $\sigma|_E : E \to \sigma(E)$. If E is normal over F, then this gives a map $\text{Gal}(K/F) \to \text{Gal}(E/F)$.

Lemma 1.2. Let K/F be Galois and E be intermediate. The restriction map res_E : $\operatorname{Gal}(K/F)/\operatorname{Gal}(K/E) \to \operatorname{Emb}_F(E)$ is a bijection. If E/F is Galois, then this is an isomorphism of groups.

Proof is left as an exercise.¹

¹Why, Professor Sharifi? Why?